
On the Exploitation of Process Mining for Security Audits:
The Conformance Checking Case

Rafael Accorsi Thomas Stocker
Department of Telematics

University of Freiburg, Germany
{accorsi, stocker}@iig.uni-freiburg.de

ABSTRACT
Process mining stands for a set of techniques to analyze busi-
ness process models and logs. However, the extent to which
it can be used for security auditing has not been investigated.
Focusing on conformance checking and its support in ProM,
this paper reports on a case-study in the financial sector ap-
plying this technology for the auditing of relevant security
requirements. Although the vast majority of requirements
could be verified, we notice a large manual effort to carry
out the analysis. Moreover, we identify a class of security
requirements that demands process discovery for analysis,
and elaborate on ways in which process mining could be
extended to better suit security analyses.

Categories and Subject Descriptors
H.4.1 [Information Systems and Applications]: Office
Automation—Workflow Management ; K.6.5 [Management
of Computing and Information Systems]: System Man-
agement—Management Audit ; K.6.5 [Management of Com-
puting and Information Systems]: Security and Protec-
tion

Keywords
Business Process Security Audit, Process Mining, Confor-
mance checking, Information Flow Analysis

1. INTRODUCTION
Despite the growing effort in tool design for the secure

deployment of business process models, e.g. [1, 5], security
incidents and fraud soar [4]. Security audits, whether inter-
nal or external, could circumvent these incidents, thereby
detecting violations of, e.g., separation of duties or four-eye
principle. However, current auditing practices have short-
comings. Firstly, audits are largely based on samples, that
inevitably provides an incomplete view of the process exe-
cution [9]. Secondly, there is no specialized tool support for
auditing security in workflows systems, leading to largely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 26-30, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

manual audits [20]. Overall, it is not only the case that
audits blatantly fail to detect security violations, they are
also time-consuming. (In fact, according to [4], the median
time to detect frauds amounts to 18 months.) Auditing au-
tomation reduces the corresponding transaction costs, while
improving their quality and precision.

Process Mining (PM) stands for automatable techniques
to analyze business process models and their execution traces
(logs) [21]. PM provides methods for reconstructing process
models from logs (process discovery), checking the confor-
mance of an existing or reconstructed model and logs (con-
formance checking), and enhancing process models based on
the results of analysis (process enhancement). Despite the
potential to notably improve the quality of security audit-
ing [22], to-date PM has only been modestly employed.

This paper investigates the use of PM for security au-
dits. Focusing on compliance checking and employing its
implementation on ProM [25], this paper reports on a case
study for the financial sector. The investigation follows the
guidelines of [18] for conducting and reporting case stud-
ies. In particular, we used interviews to obtain: firstly,
the shape of a non-trivial loan application process; secondly,
the set of concrete security requirements derived from the
set of global business process security requirements [5]; and
thirdly, the usual execution characteristics (e.g. number of
successful grants and rejected loan applications). Logs are
simulated accordingly in an automated manner, including
random violations of the security requirements.

In doing so, we obtain the following findings:

● Conformance checking provides a well-founded, pow-
erful tool for the analysis of a relevant set of require-
ments, including control deviations (skipping and swap-
ping activities), separation of duties, and obligations.

● Showcase technologies, in this case ProM, are not suit-
able for the industrial size analysis. One does not only
encounter scalability problems, but also the manual ef-
fort required to interface the different modes and anal-
ysis techniques is very high.

● There is a class of properties, namely “non-leak prop-
erties” [1], whose analysis requires process discovery.

It should be noted that we employ only a fraction of the
existing conformance checking techniques to detect secu-
rity violations. In fact, we focus on those necessary to de-
tect the most important requirements, leaving out (security-
relevant) approaches, such as those analyzing the organi-
zational perspective, which allows for role mining and the
circumscription of a subject’s social network.

Eventually, our goal is to investigate the potential of all
PM techniques for conducting security audits, building spe-
cialized techniques and tool support. In particular, there is
an yet to be unleashed potential to connect powerful infor-
mation flow techniques, such as InDico [1], RecIF [3], and
PDG [27], to security auditing and, thus, business process
diagnosis and enhancement.

Related work. The use of process mining for (internal and
external) audits has been gaining in momentum. However,
to the best of our knowledge there is no previous academic
work addressing the intersection of security audits and pro-
cess mining. In [22], Aalst et al. propose an auditing frame-
work that basically employs process discovery and confor-
mance checking and describe some challenges of applying
process mining to auditing. In [13], Jans et al. showed that
the use of process mining techniques can be of additional
value to reduce the risk of internal fraud in companies by ap-
plying their IFR2 framework on a case company. In order to
check if a process functions in a way that corresponds to the
designed model they employ process discovery techniques
to reconstruct a process model showing the actual process
behavior. Besides analyzing relations between process ac-
tivities and involved persons they use conformance checking
for the verification of segregation of duty constraints. This
paper is similar to Jans et al. [12], who use process mining
for the purpose of internal auditing of a procurement cycle
in a financial institution. The main difference is the focus
on security.

Paper structure. Sec. 3 presents the considered workflow,
corresponding security requirements and simulation details.
In Sec. 4 shows how conformance checking is used to verify
the security requirements. We discuss these results in Sec. 5
and conclude in Sec. 6.

2. METHOD AND CASE STUDY DESIGN
We employ the guidelines of [18] to conduct the case study.

A case study is the most appropriate research methodology
for this setting, as its primary objective is exploratory, with
a flexible design, and collecting qualitative (instead of quan-
titative) data. Concretely, the case study encompasses the
following steps:

1. Case study design: the objectives and objects of the
case study are defined. This is given below.

2. Preparation for data collection (Sec. 3).

3. Evidence collection: carry out the analysis (Sec. 4).

4. Analysis of collected data (Sec. 5).

The objective of the case study is to demonstrate the feasi-
bility of conformance checking as a tool for security auditing.
Hence, the primary research question is: Does conformance
checking generally allow the testing of traditional security
requirements? In addition to this, the study also addresses
a secondary research question: What kind of properties can
be detected using conformance checking? This subordinated
question addresses aims to delimit the scope of conformance
checking and circumscribe properties whose testing requires
other techniques, such as process discovery. The study is
therefore explorative.

The “case under study” is the analysis of a real-life busi-
ness process model and the log file it produces. The process

comes from the financial sector and depicts the steps toward
granting a loan application. Fig. 4 depicts the formalization
of the process in the Business Process Model and Notation
(BPMN), whose design has been obtained from and vali-
dated in interviews with the bank managers. (Note that
each activity is labeled with a letter, which acts as an ab-
breviation for the task.) This process is to a largest extent
automated within the bank, whereas the execution of non-
automatable tasks are to be recorded in process logs.

For the sake of privacy, the case study does not build
upon the real process logs, but generates such logs through
the process simulation. This simulation is controlled and
parameterized by typical business conditions, such as the
acceptance rate, number of individuals involved, and the
aborting quotes. In this case, we simulate a six-month pe-
riod, which is the usual time span considered by auditors. To
also include deviations of the prescribed process, the simu-
lation automatically adds traces in which violations happen.

3. SECURITY REQUIREMENTS AND SIM-
ULATION SETTINGS

The classes of requirements for business processes are [5,
11]:

● Authorization: enforcing access control to ensure that
only authorized individuals/roles are allowed to exe-
cute activities within a process [19].

● Usage control : enforcing constraints after the access
to data, e.g. data retention and cardinality of use [16].

● Separation of duty (SoD): constraints associated with
the process to limit the abilities of agents to perform
activities, eventually reducing risk of fraud [7]. Bind-
ing of duties (BoD) denotes the dual constraint, tight-
ing subject/roles to particular sets of activities.

● Conflict-of-interest (CoI): preventing the flow of sen-
sitive information among competing organizations/de-
partments taking part of in a process execution [8].

● Isolation: executions of the process do not interfere
one to the other.

We employ these general requirements to derive the con-
crete requirements for the loan application process. To do
so, we interview not only the bank personnel but also audi-
tors acquainted with the usual requirements.

3.1 Security Requirements
The main constraints for the loan application process are:

(S1) Authorization: Employees have to stick to the role-
based access control constraints.

(S2) Usage control: If the credit amount for registered cus-
tomers exceeds $10.000, the purpose has to be checked.

(S3) Usage control: Consultants must request an acknowl-
edgement from a backoffice clerk before approving loans
with a credit amount higher than $30.000.

(S4) CoI: Backoffice clerks must submit the prepared con-
tract to a manager for signing if the credit amount
exceeds $50.000.

(S5) Usage control: Once a loan is approved, the contract
has to be prepared within the validity period of the
approval, which in turn must not exceed 7 days.

(S6) SoD: Signing and acknowledgment activities must be
executed by two different persons each.

(S7) SoD: The tasks of checking the financial status and
the external rating of a non-registered customer must
not be carried out by the same person.

(S8) SoD: A process must never be executed completely by
one single user.

(S9) BoD: Loans must be approved by the acknowledging
consultant.

(S10) Isolation: Details on the automatically conducted
blackbox calculation of the credit parameter must not
be leaked.

Authorization constraints, as well as SoD/BoD are typical
security controls used in practice to prevent process misuse.
Note that S10 differs from the other requirements in that it
ranges not only over the particular value, but also on how
the value is computed. Technically, whereas the other re-
quirements stand for the so-called “safety properties”, S10
is a hyperproperty. Hyperproperties can be used to define
information flow policies specifying how much information
can be learned by users of a system [10] or in our case par-
ticipating actors of a process.

3.2 Managed Process Simulation
To provide a basis for analyzing security properties within

a realistic setting, a managed simulation approach was cho-
sen. Based on expert knowledge, a mid-size city-located
bank handling a large number of consumer credits was cho-
sen as simulation scenario. The simulation assumes the fol-
lowing constraints:

● Applications within a 6-month period: 21.000. City-
located banks typically have a large number of loan
applications compared to banks in rural environments
with a low percentage of registered customers. (As
mentioned above, six-months provide for the usual sam-
ple of transaction data for auditors.)

● Rejection rate: 67%. Due to the high number of ap-
plications and applicants with bad solvencies, most of
the loans are refused.

● Credit division size: 50 employees organized as in Fig. 1.
It contains four different roles that be taken during the
execution of process activities. Each role within the
lattice subsumes the competences of all lower roles.
These roles correspond to the BPMN-lanes in Fig. 4.

Generating process logs. We employ the simulation mod-
ule of the Security Workflow Analysis Toolkit (SWAT) [2]
to automatically simulate process executions and generate
the logs. For this, we translate the BPMN specification into
a Petri net, as they provide a formal execution semantics.
This translation is semi-automated and follows [14].

The simulation procedure consists of the two steps de-
picted in Fig. 2. Step 1 transforms a given BPMN diagram
into a Petri net model. In Step 2, process executions are

manager

consultant backoffice clerk

customer service

Figure 1: Lattice of business roles.

simulated based on additional execution parameters in form
of participating task originators, data items/-values to sup-
port resource-oriented branching conditions.

We chose appropriate activity transition probabilities to
meet the simulation constraints stated on the beginning of
section. To provide context information in generated log en-
tries, e.g. the activity originator or data attributes, the sim-
ulation engine also requires the organizational model (i.e.
which employees have which roles) to derive activity exe-
cution permissions. Based on given average task execution
durations, the simulation engine randomly generates times-
tamps for log entries. A resultant log entry has the shape:

timestamp activity originator input data output data

Using a trace-oriented approach, generated workflow ex-
ecutions are stored in form of traces containing subsequent
activity executions (so-called cases). Generated execution
logs contain a list of cases ordered by the starting time. To
provide a basis for subsequent analyses within ProM, gen-
erated workflow logs are stored in the MXML format, an
XML format for the representation of process logs [26].

Simulating violations. During the simulation, we also
consider behavior that deviates from the prescribed process
model, thereby violating the requirements in Sec. 3.1. To do
so, we employ a security testing approach to generate signif-
icant test cases, which has been prototypically implemented
in SWAT. For example, one violation is assigning the same
individuals to tasks that must otherwise be separated (SoD
violation), another violation lets the loan approval time de-
layed for a period greater than 7 days.

Together with the automated simulation of violations, log
files were also modified after the generation. In this case, in-
terview partners were made aware of the log format and ran-
domly added violations (without violating the well-formedness
of entries). The goal here was to insert security incidents we
were not aware of.

For both the automated and manual violation generation,
the traces containing a violation were marked as such in
order to keep track of where they take place. To simulate a
real audit situation, we were using a log file where violation
information has been stripped off.

3.3 Conformance Checking and ProM
Conformance checking approaches measure the adequacy

of a process log and a process model, or verify constraints on
execution traces alone. Conformance checking can be used
to find traces that deviate from the prescribed process, and
to check if execution traces comply with resource-oriented
constraints. This section summarizes the main techniques
for conformance checking and their support in ProM [25].

Execution
Traces

 MXML
2.

Simulation

Petri netBPMN diagram

1.
Transformation

Analysis

Execution
Parameters

Figure 2: Simulation procedure.

Control flow deviations in process logs represent unin-
tended process executions and, thus, can be of relevance
regarding security auditing. A common method for finding
such deviations is to replay logged process executions on an
existing Petri net model. [17] propose an approach that be-
sides providing detailed information on different fitness and
appropriateness metrics, also supports replaying and the se-
lection of deviating traces. This approach is also available
within ProM as the Conformance Checker plugin. The use
of replaying techniques to find skipped activities or other
control flow deviations can effectively assist auditors in dis-
tinguishing between executions that comply with the model
from those that do not. In particular, one can single out
and focus on “outliers” possibly encompassing violations of
security requirements.

There is limited tool support the verification of authoriza-
tion constraints so far. Within ProM, the plugin Originator
by Task Matrix can provide information on which origina-
tors were involved in which process activities to decide on
unauthorized executions, but still requires high manual ef-
fort in finding violations. Baumgrass et al. [6] proposed
an approach for directly checking RBAC policies on process
execution traces. Analysis tools accepting an access control
matrix together with a process log that can give evidence
on access control violations are helpful for auditors in eval-
uating the efficiency of installed enforcement mechanisms.
Unfortunately such a tool is not available yet.

Using formal descriptions of security properties, model
checking techniques are available to formally verify (non)-
conformance. Van der Aalst et al. [24] developed a LTL
based language to formulate properties in the context of
event logs. Together with a verification engine, this lan-
guage has been made available in form of the LTL Checker
plugin within ProM. BoD, SoD and control flow constraints
can be verified by specifying appropriate LTL formulas.

Timely completion of successive tasks and validity peri-
ods of incorporated/generated data items can be critical re-
garding proper process completion. Similar to the logical
definition of other resource-oriented constraints, there are
frameworks for timed constraints too. With the help of the
CLIMB framework developed by Montali [15], business con-
straints can be modeled and verified using computational
logic. The included proof procedure SCIFF is available in
form of the ProM plugin SCIFF Checker and capable to clas-
sify a set of MXML traces as (non)-compliant with respect
to a declarative business rule.

4. CHECKING SECURITY PROPERTIES
In this section, different kinds of security properties are

checked using built-in tool support of the ProM framework.

Activity Count Affected Traces

C 5 308, 2835, 5818, 15731, 14103, 14915
E 4 13585, 4221, (4842, 12693)
F 2 (9420, 17459)
H 2 8223

C or E 4 (12872, 17437, 16184, 13911)

Table 1: Identified control flow deviations.

Employee ID Business Role

1 - 6 Manager
7 - 21 Backoffice Clerk
22 - 36 Consultant
37 - 50 Customer Service

Table 2: Business roles of process executors.

4.1 Finding Control-Flow Deviations
Replaying is employed to find control flow deviations that

lead to usage control violations. As a preprocessing step for
replaying the simulated process traces on the loan applica-
tion process, the BPMN model in Fig. 4 is transformed into
the Petri net, which is omitted here for space constraints.
The resultant Petri net can be used for replaying. The
Conformance Checker plugin determines a fitness value of
0.999922. Perfect fitness indicates that all log traces could
be successfully replayed on the model, so in this case there
are some “faulty” traces that have to be examined in detail.

Based on the input Petri net, the Conformance Checker
provides information about missing and remaining tokens
during unsuccessful replays which can be used to identify
the deviation type. The selection of traces that could not
successfully be replayed on the input model can be done di-
rectly in the plugin by selecting the “fitting” traces first and
then inverting the selection. Table 1 shows all skipped task
deviations together with their occurrence number and the
affected process traces. Grouped instances represent identi-
cal process instances. (Note that the activities in the process
model are labeled with capital letters.)

Fig. 3 depicts the case 15731 that shows an unintended
process execution by skipping activity C . The specification
in Fig. 4 requires activity D (check credit purpose) after
activity C. Since checking the internal rating of a customer
is a mandatory part of a loan application process to minimize
the risk of nonpayment, the reasons for the trace 15731 have
to be detected within an internal audit to estimate potential
losses or financial risks. In case of refusal, skipped tasks do
not necessarily have consequences, but as Fig. 3 shows, the
loan has been approved. Possible reasons for such control
flow deviations can be erroneous process handling within
the process engine that allows executions without checking
preconditions or intended process misuse.

4.2 Testing Authorization Constraints
To check the compliance of the workflow log to constraint

(S1), each process trace and activity therein must be checked
as to whether the user was authorized to perform the ac-
tivity. The membership of employees working on the loan
application process is listed in Table 2.

Using the Originator by Task matrix, information on which
users (so-called “originators”) executed which tasks is avail-
able. To check whether there are executions in which an
unauthorized user performs an activity, we have to manually
analyze the matrix with respect to the predefined business
roles. Table 3 shows the identified violations for backoffice
employees together with their frequency and corresponding
process instances and the total number of violations per ac-

Figure 3: Process execution skipping activity C.

tivity. With this information, decisions on further violation
handling can be made. Not in every case violations are in-
tentional, but they result from process misuses due to un-
clear definitions of responsibilities. Distinguishing between
intended and unintended violation is a crucial part for secure
auditing that falls in the area of internal audit.

4.3 Testing BoD and SoD Constraints
Considering the security requirements for the loan appli-

cation process, there are three SoD constraints (S6-S8) and
one BoD constraint (S9) formulating obligations for task
executions. Since each of the constraints (S6-S9) can be
described as a formula in LTL, the compliance of execution
traces can be verified with the LTL Checker plugin. Using
the predefined formula exists person doing task X and Y,
constraint (S6) and (S7) can be checked by adjusting X
and Y accordingly. Table 4 depicts the results.

To check constraint (S8) the formula ∃p ∶ ◻(executor ==
p) is used in the LTL Checker plugin. Applied to the log,
no traces can be found in which every activity was executed
by the same person. Generally, adding customized formulae
is a straightforward procedure and advisable.

Employee Task Number Instance

ID7 Q 1 6681

ID8
K 2 6045, 16918
S 1 14921

ID9 C 1 4743

ID10 S 1 6219

ID11 Q 1 13755

ID14
B 1 9480
S 1 14149

ID15

C 1 3548
D 1 16114
Q 1 12052

ID16 B 1 11840

ID20 Q 1 4800

violations B C D K Q S

BO 2 2 1 2 4 3

Table 3: Identified access control violations of back-
office (BO) employees.

X Y True False

(S6)
Ack. BO Ack. CO 1 20999
Sign Manager Sign BO 0 21000

(S7) Check Status Check Rating 1 20999

(S9) Ack. CO Approve Loan 20992 8

Table 4: Traces violating SoD and BoD constraints.

4.4 Testing Data Constraints
Branching decisions within workflows often depend on data

items used within process execution. The loan application
process contain various branching situations, where three are
considered in the security requirements in Sec. 3.1. Depend-
ing on the credit amount, additional checks are scheduled as
security measures in (S2-S4).

To find violations of constraint (S2), the credit amounts of
all traces that contain a transition from activity C (check in-
ternal rating) to activity I (calculate creditworthiness char-
acteristic) are examined. Filtering these traces can be done
with the help of the LTL Checker plugin. After applying the
formula ◇CI on the process log, a set of 1189 traces is iso-
lated. In a further analysis step, we check whether this set
contains traces where the credit amount is equal or higher
$10.000. With the help of additional LTL formulas consid-
ering the creditAmount data item which is set by activity B
(prepare loan application), we find out that merely 157 exe-
cutions are compliant. Analogously, testing the constraints
(S3) and (S4) leads to portions of 45,92% and 19,79% vi-
olating execution traces respectively. This is a considerable
rate. If found in a real-life log, this would mean that the
bank had serious problems in enforcing security measures.

Within an internal audit it would be interesting why the
majority of process executions do not stick to the branching
constraint. A possible reason could be that the loan pro-
cess is not completely automated, thereby allowing users to
decide on their own risk which path to take.

4.5 Testing Time Constraints
Time constraint (S5) relates to the activities Approve

Loan (L) and Prepare Contract (N) and requires the com-
pletion of N within a period of 7 days after L was completed.
To check this, the set of traces used as input for the SCIFF
Checker is first reduced to traces containing the activities
L and N which can be done by the LTL Checker plugin
using the logical formula ◇L◇N . This reduces the candi-
date set from 21.000 to 7.036 traces and saves computation
time. The SCIFF Checker can be applied to MXML logs and
allows the specification of user-defined rules. For checking
(S5), the rule “IF activity L is performed at time t0 THEN
activity N should be performed before t0 + 7days” is applied

Approve Loan (L) Prepare Contract (N)

1
Time 03.01.2011 14:26 10.01.2011 17:03
Originator ID 29 7

2
Time 07.03.2011 15:53 14.03.2011 18:57
Originator ID 23 8

3
Time 06.04.2011 19:15 14.04.2011 10:06
originator 34 12

4
time 14.04.2011 12:01 21.04.2011 15:19
originator 28 17

Table 5: Traces violating time constraint (S5).

Date Trace Activities Employee ID

2011-01-03 17 A → B → C → I → S 32

2011-01-07 629
A → B → C → I → S 282011-01-07 682

2011-01-07 775

Table 6: Aborted processes containing activity I
that were executed by a single actor.

on the candidate set. The results of the logical verification
procedure is displayed in form of a pie chart and shows that
4 traces violate the specified rule. Table 5 shows these traces
together with timing information and originators.

To find out where delays occurred and which originators
are responsible for them, a Dotted Chart analysis can con-
ducted to visualize task execution times and inter-task de-
lays. Together with the originators, this provides valuable
information for auditing.

4.6 Testing Isolation Constraints
Constraint (S10) claims that no information about the

blackbox calculation can be leaked. In contrast to other
constraints, it does not relate to specific data elements or
other process resources specified in the process. Informa-
tion leakage in this context can be interpreted as the pos-
sibility to gather information on the calculation procedure
by analyzing the generated outputs of task I with respect
to the given inputs. Concretely, it should not be possible
to find out how the credit parameter changes depending on
the internal rating, the acceptability report and the credit
amount. Obviously it cannot be prevented that consultants
and backoffice clerks gather some knowledge about the cal-
culation since they have to prepare the inputs and work with
the output, but to prevent manipulation they should not be
able to find out calculation details.

A possible approach would be to test if task I is repeated
several times within one process execution. Since the loan
application process does not allow a repetition of I, these
cases represent control flow deviations. The analysis for
finding control flow deviations only yielded traces containing
skipped tasks, so this possibility is ruled out. Another pos-
sibility is to search for cases where the same actor starts a
loan application process, triggers the calculation procedure
and then aborts the process execution. Repeatedly misusing
the process like this can enable users to learn how the inputs
influence the output of the credit parameter calculation. To
find such cases, all aborted process instances that contain
the activity I are identified first using the LTL Checker plu-
gin, which results in 2678 process traces. Applying the LTL
formula to identify traces where all activities are conducted
by the same actor yields the traces in Table 6.

There are two different users that started and aborted
a loan application while executing all activities on their
own. Especially for the last three cases (all aborted traces
were started on the same day), the reasons for such practice
should be clarified. Generally, it is impossible to detect and

quantify isolation properties using conformance checking.

5. DISCUSSION
Conformance checking approaches could be successfully

used to verify the desired security requirements for the loan
application process. In fact, they provide an appropriate
basis for requirements (S1-S9), where a testing strategy
could be found and successfully applied. (See below for
(S10).) These requirements correspond to safety properties
and it seems reasonable that the trace-wise analysis provided
by conformance checking suffices to detect their violations.
We could indeed detect all the violations of this require-
ments, both those that were generated automatically and
those added by the experts. Still, we identify three major
issues, which can be understood as “threats” to the validity
of the case study (whenever transferred to real-life):

● The application of existing tools involves extensive ad-
justments or manual steps. Put another way, tool-
chains tailored for security are missing.

● We generate logs in a technically very controlled for-
mat. In real-life systems, there are several steps neces-
sary to bring them down to mining-aware log format,
e.g., MXML, or even generate logs coherent at all.

● Mining results are often presented at a low level and re-
quire abstraction. In particular, it is not reasonable to
display LTL formulae or Petri net patterns to auditors,
who are potentially not literate in these formalisms.

We firmly believe that these are technical shortcomings
which can be dealt with a set of purpose-specific tools cou-
pled with techniques to“plug-in”the tool in different process-
aware enterprise architectures and systems. They would not
enhance the power of tests, but make it considerably handy.

In contrast to the other requirements, (S10) – and more
generally, isolation requirements – stand for hyperproperties
which must be tested on “sets of sets” of traces. In fact, even
though we attempt to tackle a special form of isolation in
Sec. 4.6, the success is modest. Addressing this point is
necessary to enlarge the kinds of constraints to be detected.

The current support for such testing is not sophisticated
and may require the analysis of the process model obtained
by process discovery (instead of the sole traces). By that we
do not only mean the extraction of process models from logs
represented as Petri nets, but the extraction of other types of
models that allow for reasoning about such hyperproperties.
Below we list some promising alternatives:

Information flow nets (IFnet) [1]: IFnet is a dialect
of Petri net that allows the reasoning about information
flow properties in business process models based upon the
concept of “Place-based Non-Interference”. In particular,
it allow to determine whether there are harmful structural
patterns that abet the leak of information from a classified
domain to a public domain. The great challenge here is to
extract precise models that faithfully reflect those in the log.

Propagation graphs [3]: Propagation graphs denote the
flow of data during the execution of the process, thereby
zooming in on data-awareness. While we do consider data
constraints, propagation graphs could provide for a more
expressive and complete basis to reason about authorization,
role-base access control, and delegation.

Dependence graphs [27]: A procedure dependence graph
(PDG) is a graph in which the vertices represent the individ-
ual statements and predicates of the procedure and the edges
represent the control and data dependences among the pro-
cedure’s statements and predicates. The collection of PDG
for a program is called “system dependence graph”. Such
program representation has been successfully used to show
several information flow properties through slicing. While
building a kind of program analysis, it could provide a pow-
erful basis for the analysis of discovered model.

6. SUMMARY AND FURTHER WORK
This paper reports on a case study using conformance

checking techniques for security auditing. In particular, it
employs a bank scenario and a real-life loan application pro-
cess to synthesize execution traces which are tested against
the common security requirements. Conformance Checking
and ProM indeed provide a solid basis for carrying out the
main analysis steps. In fact, we could verify the vast major-
ity of requirements by combining different techniques, while
informally circumscribing a class of properties for which con-
formance checking does not suffice.

The focus of further work is twofold: firstly, enhance the
analysis with conformance checking. For example, in the
case study we do not consider the delegation of rights (and
their revocation). Attaching this analysis is relevant in sev-
eral real-life applications. Secondly, investigate the use of
process discovery for security auditing. In particular, we ex-
amine precision of discovered models and devise methods to
tackle over- and underfitting. A particular challenge we see
here is the consideration of data-flow information from logs.

7. REFERENCES
[1] R. Accorsi and C. Wonnemann. Strong non-leak

guarantees for workflow models. In Symp. on Applied
Computing, pages 308–314. ACM, 2011.

[2] R. Accorsi, C. Wonnemann, and S. Dochow. SWAT: A
security workflow toolkit for reliably secure
process-aware information systems. In Conf. on
Availability, Reliability and Security, pages 692–697.
IEEE, 2011.

[3] R. Accorsi, C. Wonnemann, and T. Stocker. Towards
forensic data flow analysis of business process logs. In
Conf. on Incident Management and Forensics. IEEE,
2011.

[4] Association of Certified Fraud Examiners. Report to
the nations on occupational fraud and abuse.
http://www.acfe.com/uploadedFiles/ACFE_

Website/Content/documents/rttn-2010.pdf, 2010.

[5] V. Atluri and J. Warner. Security for workflow
systems. In Handbook of Database Security, pages
213–230. Springer, 2008.

[6] A. Baumgrass, T. Baier, J. Mendling, and
M. Strembeck. Conformance checking of RBAC
policies in process-aware information systems. In
BPM’11 Workshops (to appear).

[7] R. Botha and J. Eloff. Separation of duties for access
control enforcement in workflow environments. IBM
Systems J., 40(3):666–682, 2001.

[8] D. Brewer and M. Nash. The Chinese-wall security
policy. In IEEE Symp. on Security and Privacy, pages
206–214, 1989.

[9] A. Carlin and F. Gallegos. IT audit: A critical
business process. IEEE Computer, 40(7):87–89, 2007.

[10] M. R. Clarkson and F. B. Schneider. Hyperproperties.
J. of Computer Security, 18(6):1157–1210, 2010.

[11] G. Herrmann and G. Pernul. Viewing
business-processes security from different perspectives.
Int’l J. of Electronic Commerce, 3(3):89–103, 1999.

[12] M. Jans, B. Depaire, and K. Vanhoof. Does process
mining add to internal auditing?. In
BMMDS/EMMSAD ’11, pages 31–45, 2011.

[13] M. Jans, N. Lybaert, K. Vanhoof, and J. van der
Werf. A framework for internal fraud risk reduction at
it integrating business processes. In Int’l J. of Digital
Accounting Research, volume 9, pages 1–29, 2009.

[14] N. Lohmann, E. Verbeek, and R. Dijkman. Petri net
transformations for business processes - A survey. In
Trans. on Petri Nets and Other Models of
Concurrency, volume 5460 of LNCS, pages 46–63.
Springer, 2009.

[15] M. Montali. Specification and Verification of
Declarative Open Interaction Models, volume 56 of
LNBIP. Springer, 2010.

[16] A. Pretschner, M. Hilty, and D. Basin. Distributed
usage control. Comm. of the ACM, 49(9):39–44, 2006.

[17] A. Rozinat and W. M. P. van der Aalst. Conformance
checking of processes based on monitoring real
behavior. Inf. Systems J., 33(1):64–95, 2008.

[18] P. Runeson and M. Höst. Guidelines for conducting
and reporting case study research in software
engineering. Empirical Soft. Eng., 14(2):131–164, 2009.

[19] R. Sandhu and P. Samarati. Access control: Principles
and practice. IEEE Comm. Mag., 32(9):40–48, 1994.

[20] A. Sayana. Using CAATs to support is audit.
Inf. Systems Control J., 1, 2003.

[21] W. van der Aalst. Process Mining. Springer, 2011.

[22] W. van der Aalst, K. van Hee, J. van der Werf, and
M. Verdonk. Auditing 2.0: Using process mining to
support tomorrow’s auditor. IEEE Computer,
43(3):90–93, 2010.

[23] W. van der Aalst, T. Weijters, and L. Maruster.
Workflow mining: Discovering process models from
event logs. IEEE Trans. Knowl. Data Eng.,
16(9):1128–1142, 2004.

[24] W. M. P. van der Aalst, H. T. de Beer, and B. F. van
Dongen. Process mining and verification of properties:
An approach based on temporal logic. In OTM
Conferences, volume 3760 of LNCS, pages 130–147.
Springer, 2005.

[25] B. van Dongen, A. de Medeiros, H. Verbeek,
A. Weijters, and W. van der Aalst. The ProM
framework: A new era in process mining tool support.
In Conf. on Applications and Theory of Petri Nets,
volume 3536 of LNCS, pages 444–454. Springer, 2005.

[26] B. van Dongen and W. van der Aalst. A meta model
for process mining data. In Workshop on Enterprise
Modelling and Ontologies for Interoperability,
volume 16, 2005.

[27] D. Wasserrab, D. Lohner, and G. Snelting. On
PDG-based noninterference and its modular proof. In
Workshop on Programming Languages and Analysis
for Security, pages 31–44. ACM, 2009.

F
ig

u
re

4
:

L
o
a
n

a
p
p
li
c
a
ti

o
n

p
ro

c
e
ss

a
s

B
P

M
N

d
ia

g
ra

m
in

c
lu

d
in

g
d
a
ta

e
le

m
e
n
ts

.

