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Abstract. This paper reports on ongoing work towards a novel ap-
proach to process mining to support security audits in dynamic PAIS.

1 Introduction

Although workflows are largely employed in mission-critical process-aware
information systems (PAIS) demanding strong security and privacy guar-
antees [6], appropriate security audit methods are missing [7]. Computer
assisted audit techniques based upon process mining [10] cannot cope with
the security analysis of evolving workflows [9]. This is due to: firstly, lack
of fine-grained models that consider the different process configurations;
secondly, the sole focus on the control flow, neglecting the data flows.

This paper reports on ongoing work on an extension of process min-
ing to address the first of the aforementioned problems. Process mining
generates a single model that consolidates all the different executions
happening in the log file. This produces a coarse view of the underlying
process. Trace clustering techniques act as a preprocessing step for pro-
cess mining [4, 5, 8], thereby allowing for a fine-grained set of models. The
idea is to group traces according to different characteristics and, subse-
quently, mine a particular set of clusters. While clustering allows for the
selective reconstruction of traces, it still fails to mine the complete “his-
tory” (i.e. evolution provenance) of a business processes, identifying their
diverse “tenancies” and how they differ.

We propose an approach for time-oriented log-clustering that is able
to directly reflect the changing dynamics of a workflow’s structure. Our
approach clusters traces according to the timepoint where workflow in-
stance has been triggered. In doing so, we obtain a chronological ordering
of workflow tenancies which allows an auditor to appreciate the modifi-
cations that have been made on the original workflow, e.g. inserting or
deleting activities leading to new instances.

Related work. Trace clustering algorithms are either similarity-based [5,
8] or precision-based [4]. Similarity-based approaches cluster traces ac-
cording to a predefined threshold of trace similarity. Traces falling within
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the threshold are considered “similar”, otherwise they stand for a differ-
ent cluster. The challenge here is to set a reasonable threshold for trace
similarity that does not lead to over- and under-generalization. Precision-
based approaches are iterative methods based on process mining. The
idea is to select clusters according to the whether the mined workflow is
a model for all the actual traces. Whenever a mined specification is not
able to execute a trace (i.e. it is not a model for the trace), then a new
cluster originates. This continues until each trace has a model.

In both approaches, clusters (and mined models) are loosely couple
with each other and not expressive enough for security analysis. First,
one cannot tell the extent to which a model relates to the other; sec-
ond, the generated models are not organized chronologically. In security
audits, it is necessary to have both features: establish the relationship
between models records their provenance, allowing auditors to appreciate
the modifications that led to a model; and since auditors usually sample
data according to time [7], and cluster based on time to obtain a more
precise view of the process instances in a frame of time.

2 Time-based Clustering Method

To detect workflow adjustments (i.e. changes), we determine the expected
workflow behavior; anomalies are treated as indicators for adjustment op-
erations. To identify such changes in the model, we analyze the evolution
of distances between workflow activities. Model adjustments are under-
stood as operations that change the way a process can be executed in the
sense of adding or removing activities.

The distance between any two workflow activities within a trace is de-
fined as the number of intermediate activities. In a fixed model, this dis-
tance remains constant over time if the activities are aligned and ranges in
fixed boundaries conditioned by the minimum and maximum distance as
shown in Fig. 1 in any other case. Workflow adjustments cause boundary
variations for at least one activity pair. Monitoring distance progresses for
all possible activity-pairs allows the identification of workflow tenancies.

Typical workflow behavior is determined on the basis of a parame-
ter s (window size), that specifies the minimum number of traces used as
“training” data and also defines the minimum cluster size. Sequentially
processing a log file L consisting of traces t1, . . . , tn, according to their
timestamp, our algorithm uses a window of s traces for determining the
typical workflow behavior in terms of boundaries mini,j and maxi,j for
the distance di,j of any two successive activities ai and aj , in a trace.
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Fig. 1. Distance progress for a fixed activity pair.

Observed activity distances can continue their corresponding boundaries
or introduce new ones. In detail, there are three cases to be distinguished:

1. The distance is equal to the boundary: di,j = maxi,j ∨ di,j = mini,j

2. The distance surpasses a boundary: di,j > maxi,j ∨ di,j < mini,j)
3. The distance is within the boundaries: (di,j < maxi,j ∧ di,j > mini,j) ∨ (di,j >

mini,j ∧ di,j < maxi,j)

Fig. 2 shows the intervals that are introduced in these three cases.
In Case 1 nothing has to be done. While Case 2 definitely introduces a
new interval, as old boundaries cease to hold, in Case 3 further analysis
is necessary. If di,j belongs to a new, smaller interval, the next s distance
values reflect these new boundaries. Our algorithm uses a s-size lookahead
to check this property. As long as the observed pair-distances of following
traces do not conflict with the typical boundaries, they are put in the
same cluster. Once a new interval is detected, the typical behavior is
calculated again on basis of the next s distance values.

In going so, we identify modifications and their timepoint, thereby
allowing time-based clustering. Instead of extracting a single workflow
model from log data or clustering by similarity, time-based clustering
enables auditors to decide about which models fall into a testing period
and can assist in identifying relevant starting points for analysis.

3 Summary

Overall, the approach we put forward contributes to the following areas:

Business provenance increases the traceability of end-to-end business op-
erations in a flexible and cost-effective manner [3]. Our clustering tech-
nique and the subsequent mining provide provenance information.
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h) higher minimum, higher maximum
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Fig. 2. Possible boundary changes.

Audit reduction provides filtering techniques that allow an auditor to se-
lect which of the various mined workflow specifications are to be audited.

Security audits use InDico to test mined workflow models for security
properties [1]. InDico and the clustering methods we propose are realized
in SWAT [2], a security workflow analysis toolkit. Further work extends
SWAT to support the subsequent process mining.
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