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Motivation
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Within the last decade, several complex data sources (e.g. text, images,
videos) have been incorporated into decision-making

Progress in airborne laser scanning (e.g.
via drones) and photogrammetry has
made 3D building geometries available
in map services such as Googlemaps

» So far, mainly visualization purposes

= Little usage for managerial decision-

making with analytics Real buildings? and corresponding 3D models

2 http://www.pfarrverband-miesbach.de/seite/182439/unsere-kirchen.html
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Research Questions

1. What is the value of 3D spatial data for decision-making?
2. How can 3D data be incorporated into analytical modeling?
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Approach
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3D spatial data consists of an object representation and a representation of the

environment. At least one of the representations is in 3D:

3D spatial data 1D 2D 3D
Object A “ _
representation . l — £l i 7
LoD1 LoD2 LoD3 LoD4
None 2D 3D

Environment Location = Location =
representation (latitude, longitude) (latitude, longitude,

elevation)
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Showcase 1: What do
building geometries
tell us about real
estate valuations?

Showcase 2: What
does the 3D
environment tell us
about the adoption of
solar photovoltaic
systems?



Showcase 1: What do building geometries tell us about

real estate valuations?
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1. Goal: Predict future rent prices of flats based on observed prices of the past
2. Study design:
= Berlin in order to obtain a sufficiently large sample of historic rent prices

= QObject representation: Simple level-of-detail 1 (LoD1) to demonstrate added value
even for low-resolution 3D data

- JloR -

LoD1 LoD2 LoD3 LoD4

1D 2D

= Environment representation: Simple 3D environment (location and elevation)

— No interdependence between nearby objects
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Showcase 1: What do building geometries tell us about

O
. 3 (™4
real estate valuations: -
[aa]
Ll
<o
= L
3. Variables and descriptive statistics:
Variable Origin Mean Median Stdev Min Max Explanation
height [m] 3D buildings 21.74 22.49 7.66 1.92 67.01 Building height
footprint [m?2] 3D buildings 3369.65 1823.58 4659.01 23.37 33322.40 Buildings footprint
elevation [m] 3D environment 39.39 35.61 7.39 30.96 61.54 Elevation above sea level
district 3D environment dummy variables Urban district
square_meters flat offerings 83 74 39 20 482 Size of the flat
rooms flat offerings 2.52 2 1.01 1 7 Number of rooms
rent [EUR/month] flat offerings 1068.31 924 599.08 220 5000 Outcome variable

Observations: 984
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Showcase 1: What do building geometries tell us about

real estate valuations?
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4. Choice of potential prediction methods

= Conventional methods: Random forest, support vector machine, OLS regression,
Elastic net regression

= Spatial error model:
Rent; ~ Normal(u,, €)
ui = a+ fxX; + w(s)
w(s) ~MVNormal(0,K(0)) < Spatially correlated errors

C(s,t) = 0°p(s, t; ) & Correlation depends on distance
between observations s & t

p(s, t;¢) = exp(—¢lls — tf]) < Exponential decay of correlation
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Showcase 1: What do building geometries tell us about

real estate valuations?
2
=
5. Results (RMSE): Rent ~ X
g
5 : $
s 3 ¥ §F % %
S 2 % 8 =& ¥ .
X £ T = L = = SEM RF SVM OLS OLS & Elastic Net
Intercept 645.15 645.15 645.15 645.15 645.15
1D v v 261.15 259.07 239.20* 261.80 263.28
2D v v N v 260.35 248.01 239.43* 259.71 260.78
3D N v N v N N 259.26  222.47  220.24* 254.52 258.28

- 3D model outperforms more naive 1D and 2D models
- Conventional prediction methods perform better than spatial model

* best performing method

° Conclusion: 3D building data can improve mass valuations of real estate, e.g. in web portals

D. Neumann | What data tells us | 20.4.2018

FREIBURG



Showcase 2: What does the 3D environment tell us

about the adoption of photovoltaic systems?

Background: roof-mounted photovoltaic (PV) systems

=  Provide electricity
= Increasing markets worldwide

= Electricity yield depends on size and roof
characteristics
= QOrientation
= Shading

A roof-mounted PV system?

1 Adrian Pingstone, Public Domain, https://commons.wikimedia.org/w/index.php?curid=33115816
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Showcase 2: What does the 3D environment tell us

about the adoption of photovoltaic systems?
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1. Goal: Create application to assist PV system vendors in identifying target customers
2. Study design:

= 2 municipalities in Southern Germany comprising suburban, as well as rural and hilly
areas

= Learn adoption patterns from several municipal districts and predict adoption of PV
systems in an unseen district

Object representation: LoD2 3D Environment + interactions

1D 2D 3

D
) 4“"'A‘IIII’ ‘III-k “i!!ir
LoD2 LoD3

LoD1
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Showcase 2: What does the 3D environment tell us

O

: : o2

about the adoption of photovoltaic systems? 2
S

3. Data preparation and variable choice =

Solar irradiance and shadows on sample buildings for March 26, 2012
Irradiance Simulation:

= |nput: 3D spatial data,
historic weather and sun
position

= Simulation: Solar irradiance
(and shading), temperature
losses

= Qutput: Potential yearly
electricity production of PV
systems for each roof

0 220 440 660 880 1100 Wh/m?
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Showcase 2: What does the 3D environment tell us

about the adoption of photovoltaic systems?

4. Results (AUC): PV ~ X
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> B 5§ § ¢ §
2, S 50 50 = 8 &3 =
g = S 5 o o o o3 )
E B = T 9 9 % % o
X E ® 2 2 £ E £ B & sEm RF RFROSE  SVM Logit Logit & Elastic Net
Intercept 0.5 0.5 0.5 0.5 0.5 0.5
1D v v Vv 0.5513 0.5 0.6516 0.5 0.6691* 0.6379
2D v v Vv Vv 0.7091* 0.5 0.6977 0.5 0.7074 0.7065
3D Vv v v Vv v Vv v v Vv 0.8902* 0.8654 0.7872 0.7355 0.7893 0.8591
- Models based on 3D data outperform more naive 1D and 2D models
— Spatial prediction method outperforms conventional methods
12
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Showcase 2: What does the 3D environment tell us

about the adoption of photovoltaic systems?

5. Model use

1.00 1

0.754

0.50 1

0.25 1

0.00 1

Detected PV Systems [%]

0.00 0.25 0.50 0.75 1.00

Targeted homeowners according to P (PV = yes) [%]
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Model

— 1D

---2D

---3D

-- Random guess

° Conclusion: 3D building data can improve targeted marketing of PV systems
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Insights: What else can 3D spatial data tell us?

Utilizing 3D spatial data for decision making can tell us much more:

= Marketing:
= Population estimations to improve spatial demand analyses (e.g. for retail store
locations, transportation demand)
= Visibility analyses for pricing of facade advertisements

= Security and Safety:
= Visibility analyses for crime prediction
= Detection of sniper hazards
= Emergency response planning (flooding, terror attacks)

= Sustainability and Health:

= Simulate noise and pollution propagation to explain population health
= Estimate heating, cooling and electricity demand
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Insights: Key modeling questions
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| I
Goal '\ Study design & data collection Data "\ Exploratory “\ Variable choice Choice of potential Method and model Model use |
definition | preparation ",l data analysis| methods selection and
\ . \ \ reporting
Pregiction within || What are the What is the Disjoint hold-out | | Data quaiity? | [ How to extract What is the value of || How does 3D data
or accross e eI IEE U samole? [isthedata | variables fromthe | spatial prediction {impact model
arase? | relations? presentation! How to handle | aligned? /| environment? methods for 3D training and
f ' missing values? f‘ Do spatial / data? evaluation?
/ Location and extentof  Level of detail of 3D | | patterns signal ,
‘,' study area? data? |.‘ dependence? |
;" ."‘ A"‘ J
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Insights: Modeling guidelines
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1. What are the relevant real-world relations?
- Rely on domain knowledge, consider socio-economic environment
2. What is the adequate model representation?
- Evaluate trade-off between modeling complexity and information loss
3. How to extract variables from the environment?
- Summarize or simulate
4. What is the value of spatial prediction methods for 3D data?

= No silver bullet. Implicit measurement of dependence is an advantage of spatial
methods. Assumption of spatially-smoothed effects is a disadvantage

5. How does 3D data impact model training and evaluation?

— Spatial dependence and data imbalance are challenges that require special data
resampling methods

D. Neumann | What data tells us | 20.4.2018 17



