What data tells us: Applications and Value Potentials of 3D Spatial Data

Zur Verabschiedung Prof. Dr. Dr. h.c. Günter Müller

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Dirk Neumann Chair for Information Systems Research University of Freiburg, Germany

Freiburg

UNI FREIBURG

20.4.2018

Within the last decade, several **complex data sources** (e.g. text, images, videos) have been **incorporated into decision-making**

Progress in airborne laser scanning (e.g. via drones) and photogrammetry has made **3D building geometries** available in map services such as Googlemaps

- So far, **mainly visualization** purposes
- Little usage for managerial decisionmaking with analytics

Real buildings² and corresponding 3D models

² http://www.pfarrverband-miesbach.de/seite/182439/unsere-kirchen.html

- 1. What is the value of 3D spatial data for decision-making?
- 2. How can 3D data be incorporated into **analytical modeling**?

3D spatial data consists of an **object representation** and a **representation of the environment**. At least one of the representations is in 3D:

Showcase 1: What do building geometries tell us about real estate valuations?

Showcase 2: What does the 3D environment tell us about the adoption of solar photovoltaic systems?

- 1. Goal: Predict future rent prices of flats based on observed prices of the past
- 2. Study design:
 - Berlin in order to obtain a sufficiently large sample of historic rent prices
 - Object representation: Simple level-of-detail 1 (LoD1) to demonstrate added value even for low-resolution 3D data

- Environment representation: Simple 3D environment (location and elevation)
 - No interdependence between nearby objects

m

3. Variables and descriptive statistics:

Variable	Origin		Median	Stdev	Min	Max	Explanation
height [m] footprint [m ²]	3D buildings 3D buildings	21.74 3369.65	22.49 1823.58	7.66 4659.01	1.92 23.37	67.01 33322.40	Building height Buildings footprint
elevation [m]	3D environment	39.39	35.61	7.39	30.96	61.54	Elevation above sea level
district	3D environment		dum	nmy variables	;		Urban district
square_meters	flat offerings	83	74	39	20	482	Size of the flat
rooms	flat offerings	2.52	2	1.01	1	7	Number of rooms
rent [EUR/month]	flat offerings	1068.31	924	599.08	220	5000	Outcome variable

Observations: 984

4. Choice of potential prediction methods

- Conventional methods: Random forest, support vector machine, OLS regression, Elastic net regression
- Spatial error model:

 $\begin{aligned} & \operatorname{Rent}_i \sim \operatorname{Normal}(\mu_i, \varepsilon) \\ & \mu_i = \alpha + \beta_X X_i + \omega(s) \\ & \omega(s) \sim \operatorname{MVNormal}(0, K(\theta)) & \leftarrow \text{Spatially correlated errors} \\ & C(s, t) = \sigma^2 \rho(s, t; \phi) & \leftarrow \text{Correlation depends on distance} \\ & \text{between observations s \& t} \end{aligned}$

IBURC

5. Results (RMSE): Rent ~ X

X	rooms	square_meters	district	footprint	elevation	height	SEM	RF	SVM	OLS	OLS & Elastic Net
Intercept							645.15	645.15	645.15	645.15	645.15
1D	\checkmark	\checkmark	\checkmark				261.15	259.07	239.20*	261.80	263.28
2D	\checkmark	\checkmark	\checkmark	\checkmark			260.35	248.01	239.43*	259.71	260.78
3D	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	259.26	222.47	220.24*	254.52	258.28

* best performing method

→ 3D model outperforms more naïve 1D and 2D models
→ Conventional prediction methods perform better than spatial model

Conclusion: 3D building data can improve mass valuations of real estate, e.g. in web portals

Background: roof-mounted photovoltaic (PV) systems

A roof-mounted PV system¹

- Provide electricity
- Increasing markets worldwide
- Electricity yield depends on size and roof characteristics
 - Orientation
 - Shading

¹ Adrian Pingstone, Public Domain, https://commons.wikimedia.org/w/index.php?curid=33115816

D. Neumann | What data tells us | 20.4.2018

- 1. Goal: Create application to assist PV system vendors in identifying target customers
- 2. Study design:
- 2 municipalities in Southern Germany comprising suburban, as well as rural and hilly areas
- Learn adoption patterns from several municipal districts and predict adoption of PV systems in an unseen district
- Object representation: LoD2

D. Neumann | What data tells us | 20.4.2018

m

3. Data preparation and variable choice

Solar irradiance and shadows on sample buildings for March 26, 2012

Irradiance Simulation:

- Input: 3D spatial data, historic weather and sun position
- Simulation: Solar irradiance (and shading), temperature losses
- Output: Potential yearly electricity production of PV systems for each roof

4. Results (AUC): PV ~ X

X	municipality	reighborhood	building_function	building_density	roof_surface	roof_type	roof_orientation	roof_inclination	PV_power	SEM	RF	RF ROSE	SVM	Logit	Logit & Elastic Net
Intercept										0.5	0.5	0.5	0.5	0.5	0.5
1D	\checkmark	\checkmark	\checkmark							0.5513	0.5	0.6516	0.5	0.6691*	0.6379
2D	\checkmark	\checkmark	\checkmark	\checkmark						0.7091*	0.5	0.6977	0.5	0.7074	0.7065
3D	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.8902*	0.8654	0.7872	0.7355	0.7893	0.8591

→ Models based on 3D data outperform more naïve 1D and 2D models
→ Spatial prediction method outperforms conventional methods

BURG

UNI FREIBURG

5. Model use

Conclusion: 3D building data can improve targeted marketing of PV systems

Insights: What else can 3D spatial data tell us?

JNI REIBURG

Utilizing 3D spatial data for decision making can tell us much more:

- Marketing:
 - Population estimations to improve spatial demand analyses (e.g. for retail store locations, transportation demand)
 - Visibility analyses for pricing of facade advertisements
- Security and Safety:
 - Visibility analyses for crime prediction
 - Detection of sniper hazards
 - Emergency response planning (flooding, terror attacks)
- Sustainability and Health:
 - Simulate noise and pollution propagation to explain population health
 - Estimate heating, cooling and electricity demand

Insights: Key modeling questions

Goal definition	Study design & data	collection	Data preparation	Exploratory data analysis	Variable choice	Choice of potential methods	Method and model selection	Model use and
Prediction within or accross areas?	What are the relevant real-world relations? Location and extent of study area?	What is the adequate model re- presentation? Level of detail of 3D data?	Disjoint hold-out sample? How to handle missing values?	Data quality? Is the data aligned? Do spatial patterns signal dependence?	How to extract variables from the environment?	What is the value of spatial prediction methods for 3D data?	How does 3D data impact model training and evaluation?	reporting

- 1. What are the **relevant real-world relations**?
 - → Rely on **domain knowledge**, consider socio-economic environment
- 2. What is the adequate model representation?
 - → Evaluate trade-off between modeling complexity and information loss
- 3. How to extract variables from the environment?
 - \rightarrow Summarize or simulate
- 4. What is the value of spatial prediction methods for 3D data?

→ No silver bullet. Implicit measurement of dependence is an advantage of spatial methods. Assumption of spatially-smoothed effects is a disadvantage

5. How does 3D data impact model training and evaluation?

→ Spatial dependence and data imbalance are challenges that require special data resampling methods

IBUR